Insights into His Bundle Pacing Data from PM and CRT-P Studies

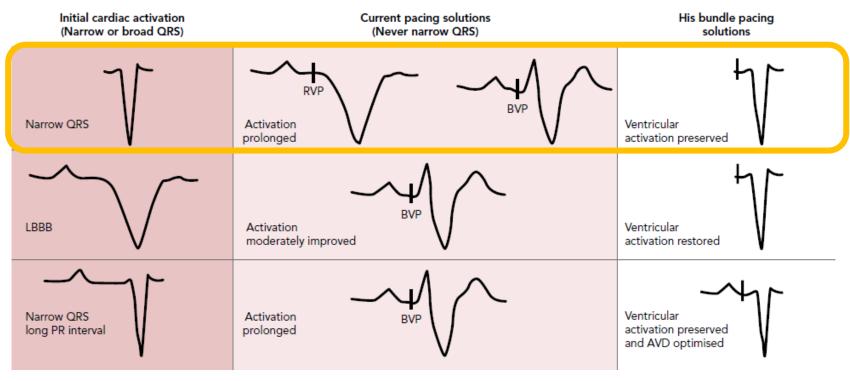
Alan Bulava

Department of Cardiology, Ceske Budejovice (Budweis) Hospital, Czechia Faculty of Health and Social Sciences, University of South Bohemia, Czechia Faculty of Medicine, Palacky University, Olomouc, Czechia

Lékařská fakulta

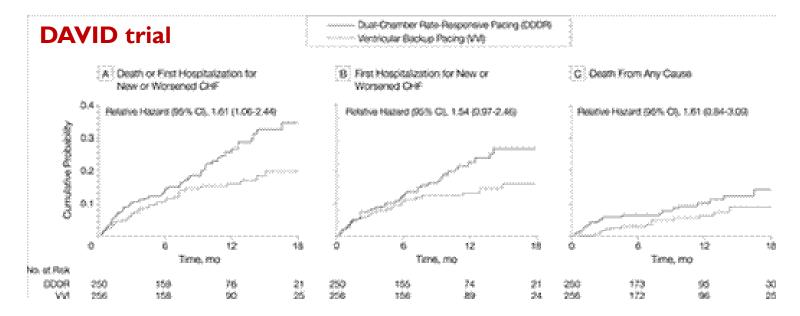
Univerzita Palackého v Olomouci

Zdravotně sociální fakulta Faculty of Health and Social Sciences Jihočeská univerzita v Českých Budějovicích University of South Bohem in České Budějovice

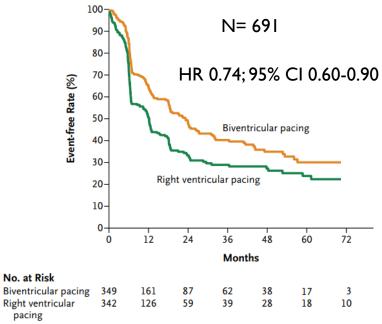


His Bundle Pacing – historical perspective

- First described in 1970 by Narula et al¹
- 1977: HBP can eliminate LBBB²
- The first report of permanent His bundle pacing in humans in 2000³

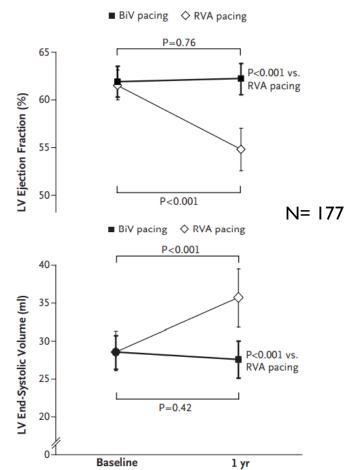

- I. Narula OS, et al. Circulation 1970;41:77–87
- 2. Narula OS, et al. Circulation 1977; 56(6):996-1006
- 3. Deshmukh P, et al. Circulation 2000;101:869-77

RV apical pacing



RVA vs. BiV

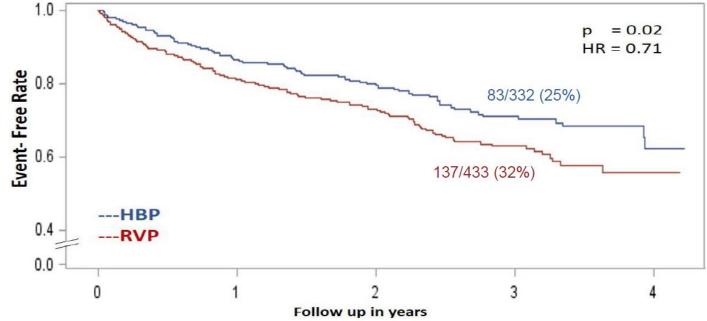
BLOCK-HF trial


Curtis AB, et al. N Engl J Med 2013;368:1585-93

Freedom from primary event = time to death from any cause, an urgent care visit for HF req. IV Thx or more increase in the LVESV index

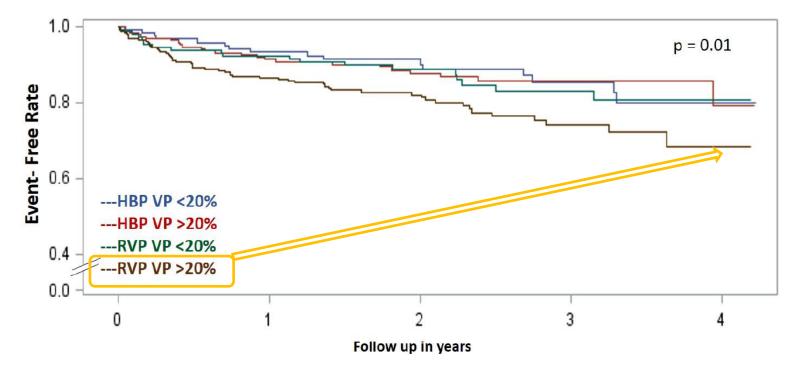
BIOPACE trial

Yu CM, et al. N Engl J Med 2009;361:2123–34

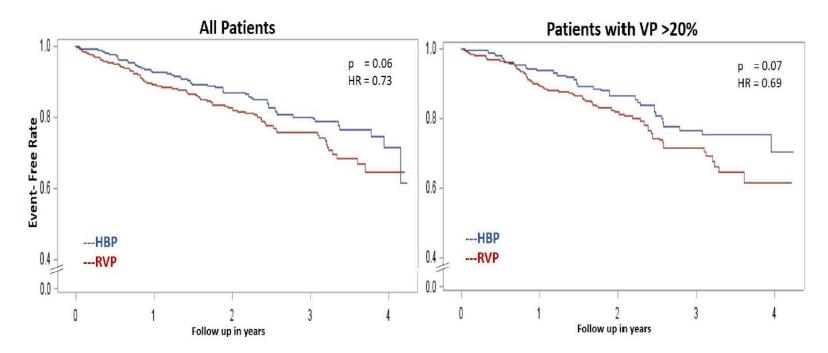

HBP vs. RVA pacing

Study	Total Patients and Inclusion Criteria	Study Design	His Pacing Success Rate	Outcomes	Summary			
Bradycardia Pacing								
Zanon et al. 2008 ²²	12 Non-randomise crossover study (3 months His pacing and 3 months RVP)		Only patients with confirmed His bundle pacing	Intra-patient myocardial perfusion (myocardial perfusion score) during His pacing compared to RVP	Myocardial perfusion score during His pacing was better than RVP			
Catanzariti et al. 2013 ¹⁸	26	Non-randomised crossover study	Patients selected after successful His pacing established	Measurements of echocardiographic dyssynchrony parameters made during His pacing and RVP (intra-patient comparison)	Reduction of pacing-induced ventricular dyssynchrony with His pacing			
Kronborg et al. 2014 ²⁰	38 (12 months His pacing and 12 months RVP)	Randomised double-blind crossover study	84 % (32/38) Six patients had leads in high septal position and were still included in study	Left ventricular ejection fraction	Left ventricular ejection fraction was significantly higher during His pacing (55 % +/- 10 % versus 50 % +/- 11 %)			
Vijayaraman et al. 20174	192 (94 His and 98 RVP)	Case control study	80 % (75 from 94 attempted)	Death and heart failure hospitalisation	Death or heart failure was significantly lower in the His pacing group (32 % versus 53 %; HR 1.9)			
Sharma et al. 2017 ²³	30 (post-prosthetic valve surgery)	Prospective observational	93 % (28/30)	Feasibility of His pacing in this subgroup of patients	His bundle pacing was feasible and achieved pacing in 93 % of patients post-valve surgery			
Shan et al. 2017 ²⁴	18 (upgrade from RVP to His pacing in RVP patients)	Prospective observational	90 % (16/18)	Left ventricular ejection fraction, left ventricular end-diastolic dimensions, NYHA class and BNP	Reduced left ventricular end-diastolic dimensions and BNP. Improved ejection fraction and NYHA class			
Abdelrahman et al. 2018 ²¹	756 (332 His and 433 RVP)	Case control study	92 % (302/332)	Death, heart failure hospitalisation and upgrade to BVP	Combined primary endpoint of death, heart failure hospitalisation and upgrade to BVP was significantly less in His pacing (HR 0.71)			

Results From Geisinger HBP Registry


Primary Outcome (Death, HFH or upgrade to biventricular pacing) -All patients-

Enrollment period: 10/2013-12/2016


Results From Geisinger HBP Registry

Heart Failure Hospitalizations

Results From Geisinger HBP Registry

All- Cause Mortality

Suggested indications in AVB

- Pts with narrow QRS (especially when reduced LVEF)
- Pts with wide QRS lower success
 - <u>better NS-HBP</u> in this group so as to have the safety of ventricular myocardial capture should conduction disease progress distally
- Pts with AAThx refractory SV arrhythmias amenable to AV node ablation and permanent pacing

HBP for cardiac resynchronization

 Kaufmann and Rothberger first proposed the idea of functional longitudinal dissociation of the HB in 1919

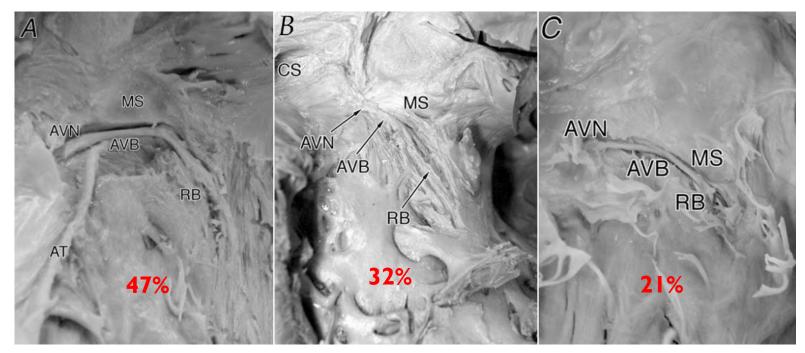
Is this concept true in majority of patients indicated to CRT?

Kaufmann R, Rothberger CJ. Zeitschrift für die Gesamte Experimentelle Medizin 1919;9:104–22

HBP for cardiac resynchronization

First Author (Ref. #)	Year	N	Indication	HBP Lead		plant ess (%	a) Major Findings
Barba-Pichardo et al. (46)	2013	16	CRT implant failure	Tendril 1488T, 1788TC, 1888TC		56	QRS narrowing achieved in 13 of 16 patients with HBP, of whom 9 underwent implant. During mean follow-up of 31.3 ± 21.5 months, NYHA functional class improved III→II and LVEF improved from 29%→36% (<0.05)
Lustgarten et al. (47)	2015	29	Crossover study of HBP and conventional CRT	Select-Secure 3830		59	QRS narrowing achieved in 21 of 29 patients with HBP, of whom 17 patients underwent implant and 12 completed follow-up. Both groups demonstrated significant improvement in NYHA functional class, 6-min walk, QOL, and LVEF compared with baseline.
Su et al. (50)	2015	16	CRT implant failure	Select-Secure 3830	1	100	Specific degree of QRS narrowing not reported, but correction achieved for all patients. They found that His bundle tip-RV coil configuration demonstrated better capture thresholds than bipolar configuration
Ajijola et al. (48)	2017	21	Primary HBP	Select-Secure 3830		76	QRS narrowing achieved in all 16 patients with implant success (180 \pm 23 ms to 129 \pm 13 ms; p < 0.0001). NYHA functional class III \rightarrow II (p < 0.001), and LVEF improved from 27 \pm 10% to 41 \pm 13% (p < 0.001)
Sharma et al. (49)	2017	106	CRT implant failure (Group I) and primary HBP (Group II)	Select-Secure 3830	l	90	QRS narrowing achieved across all patients with implant success (157 \pm 33 ms to 117 \pm 18 ms; p = 0.0001). Underlying BBB was present in 48 patients and implant success was 92% in this group (33 of 36 LBBB and 11 of 12 non-LBBB). Among all patients NYHA functional class $2.8 \pm 0.5 \rightarrow 1.8 \pm 0.6$ (p = 0.0001) and LVEF improved from $30 \pm 10\%$ to 43 \pm 13% (p = 0.0001).

BBB = bundle branch block; CRT = cardiac resynchronization therapy; LBBB = left bundle branch block; LVEF = left ventricular ejection fraction; NYHA = New York Heart Association; QOL = quality of life; RV = right ventricular ejection fraction; NYHA = New York Heart Association; QOL = quality of life; RV = right ventricular ejection fraction; NYHA = New York Heart Association; QOL = quality of life; RV = right ventricular ejection fraction; NYHA = New York Heart Association; QOL = quality of life; RV = right ventricular ejection fraction; NYHA = New York Heart Association; QOL = quality of life; RV = right ventricular ejection fraction; NYHA = New York Heart Association; QOL = quality of life; RV = right ventricular ejection fraction; NYHA = New York Heart Association; QOL = quality of life; RV = right ventricular ejection fraction; NYHA = New York Heart Association; QOL = quality of life; RV = right ventricular ejection fraction; NYHA = New York Heart Association; QOL = quality of life; RV = right ventricular ejection fraction; NYHA = New York Heart Association; QOL = quality of life; RV = right ventricular ejection fraction; NYHA = New York Heart Association; QOL = quality of life; RV = right ventricular ejection fraction; NYHA = New York Heart Association; QOL = quality of life; RV = right ventricular ejection fraction; NYHA = New York Heart Association; QOL = quality of life; RV = right ventricular ejection fraction; NYHA = New York Heart Association; QOL = quality of life; RV = right ventricular ejection fraction; NYHA = New York Heart Association; QOL = quality of life; RV = right ventricular ejection fraction; NYHA = New York Heart Association; QOL = quality of life; RV = right ventricular ejection fraction; NYHA = New York Heart Association; QOL = quality of life; RV = right ventricular ejection fraction; NYHA = New York Heart Association; QOL = quality of life; RV = right ventricular ejection; RV = right v


Suggested indications of HBP for CRT

- ???
- At present, HBP seems to be non-inferior when compared to CRT (?), but:
 - Procedural success lower
 - I0-30% of patients LBBB uncorrectable
 - CRT-D!
- His-SYNC (HBP vs. CRT) 6/2021
- HOPE-HF (HBP vs.VVI 30/min) 10/2019

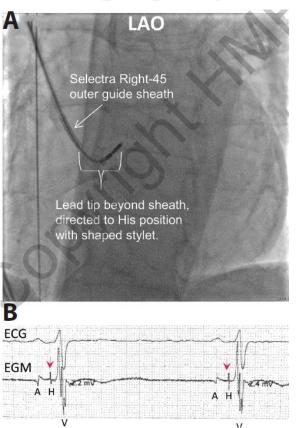
Limitations of HBP

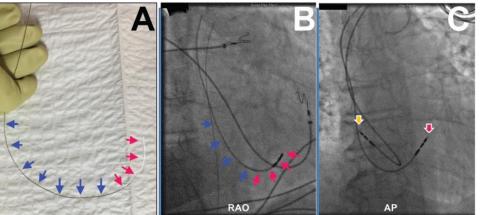
- Variable anatomy of the bundle of His
- Technical challenges incl. requirement for EP skills
 = complex procedure ≈ to CRT
- Pacing thresholds
- Decreased stability
- Procedure/X-ray times
- Relatively low success rate
- For CRT indication, only proximal HB disease are amenable to correct by HBP

Limitations – variable anatomy

(A) Type I: The His bundle (AVB) runs under the membranous part of the interventricular septum (MS). (B) The type II His bundle runs within the muscular part of the interventricular muscle apart from the lower border of the membranous part of the interventricular septum. (C) The type III His bundle (arrow) is naked running beneath the endocardium with no surrounding myocardial fibers

Kawashima T et al. Surgical and Radiologic Anatomy 2005; 27(3):206-213


Limitations – implantation techniques

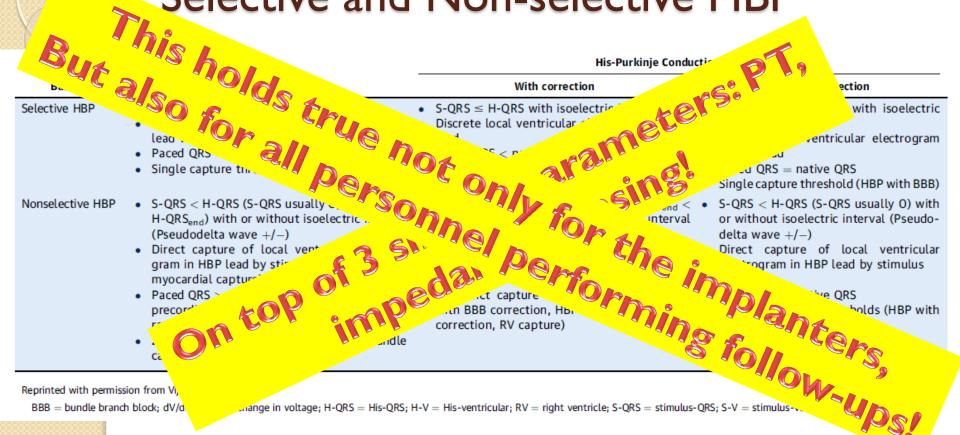

• SelectSecure 3830, C315His or C304 SelectSite (Medtronic)

Permanent HBP can be challenging due to the limited availability of delivery tools, particularly in patients with an enlarged right atrium and a displaced tricuspid annular region or right pectoral implants...

Emerging reports showing other techniques

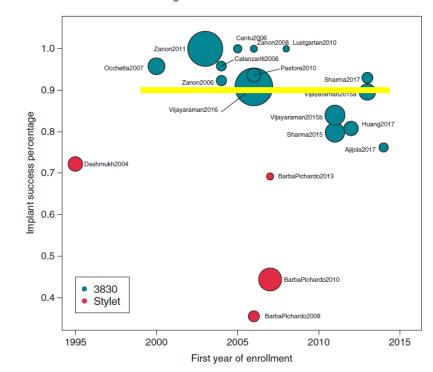
Kneller J. EP Lab Digest 2018; 18(8) Kneller JR et al. Cardiology 2017; 137(Supl 1):168

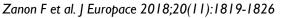
Complexity!


• Not only delivery tools in variable anatomy, but...

Assessment: Selective and nonselective HBP

Sharma PS et al. Heart Rhythm 2018;15:413–20


Selective and Non-selective HBP



Limitations – success of the procedure

- In the original report by Deshmukh et al., the success of permanent HBP in selected patients with cardiomyopathy undergoing AVN ablation was about 66% using traditional pacing leads
- Zanon et al. (26) reported an acute implant success rate of 92% in 26 patients without underlying HPCD while utilizing the 3830 pacing lead
- Sharma et al. reported the acute HBP implant success rate was 80% in a consecutive series of 94 unselected patients (including patients with HPCD) undergoing permanent pacemaker implantation
- Abdelrahman reported 92% in Geisinger HBP Registry in 332 attempts for HBP

Deshmukh P et al. Circulation 2000;101: 869–77 Zanon F et al. J Cardiovasc Electrophysiol 2006;17:29–33

Sharma PS et al. Heart rhythm 2015;12:305–12 Abdelrahman M et al. Geisinger HBP Registry

Limitations – Procedure duration and X-ray times

	His Bundle pacing (n=304)	RV pacing (n=433)	P-value
Procedure duration (min)	70.21±34	55.02±25	<0.01*
Fluoroscopy duration (min)	10.27±6.5	7.40±5.1	<0.01*
Implant Capture threshold (V @ ms)	1.30±0.85 @ 0.79±0.26	0.59±0.42 @ 0.5±0.03	<0.01*
Last follow up Capture threshold (V @ ms)	1.56±0.95 @ 0.78±0.30	0.76±0.29 @ 0.46±0.09	<0.01*
QRS duration (ms)	104.5±24.5	110.5±28.4	<0.01*
Paced QRS duration (ms)	128±27.7	166±21.8	<0.01*
Geisinger			© JACC

Limitations – pacing thresholds

- In a study of 75 patients with successful permanent HBP, Vijayaraman et al. reported His capture thresholds of 1.35±0.5V at 0.5 ms at implant that remained stable during 5-year follow-up (1.62±1.0V at 0.5 ms)
- In another study of AV node ablation and HBP in 42 patients, His capture threshold at implant was 1.5±1.0V at 0.5 ms and remained unchanged during a median follow-up of 20 months
- In a study of 100 consecutive patients with advanced AV block, acute His capture threshold at implant was 1.3±0.9V at 0.5 ms and slightly increased to 1.7±1.0V at 0.5 ms during a mean follow-up of 19 months

Vijayaraman P et al. Heart Rhythm 2018;15:696–702 Huang W, et al. J Am Heart Assoc 2017 Apr 1;6:e005309 Vijayaraman P et al. J Am Coll Cardiol EP 2015;1:571–81

Limitations – lead revision rate

- Pts with AV block: 5%¹
- Pts with CRT indication: 6.7%²

	RVP					HBP				
Visit	n	Threshold (V)	R wave (mV)	Impedance (Ω)	n	Threshold (V)	R wave (mV)	Impedance (Ω)		
Implant 1 year 2 years 5 years	98 88 77 58	0.62 ± 0.5 0.80 ± 0.3 0.80 ± 0.4 $0.84 \pm 0.4^{\dagger}$	$\begin{array}{c} 13.7 \pm 5.7 \\ 12.7 \pm 5.6 \\ 15.2 \pm 6.6 \\ 13.3 \pm 5.7 \end{array}$	754 ± 167 $585 \pm 128^{\dagger}$ 515 ± 136 468 ± 117	75 66 61 51	1.35 ± 0.9* 1.60 ± 0.9* 1.50 ± 0.8* 1.62 ± 1.0* [†]	6.8 ± 5.3* 6.7 ± 5.7* 7.0 ± 6.0* 7.2 ± 5.2*	$\begin{array}{c} 639 \pm 159 \\ 476 \pm 121^{\dagger} \\ 465 \pm 75 \\ 463 \pm 78 \end{array}$		

Table 1 Electrical parameters

Pacing threshold tested at 0.5-ms pulse duration.

HBP = His-bundle pacing; RVP = right ventricular pacing.

*P <.01 vs RVP.

†P <.05 vs implant.</p>

I Vijayaraman P et al. J Am Coll Cardiol EP 2015;1:571–81

2 Vijayaraman P et al. Heart Rhythm 2018;15:696–702

Many open questions...

- Specific situations in pts with infranodal, intra-Hisian AV block and BBB, where long-term safety of HBP has not been well studied:
 - In such patients, should a backup RV lead be placed with HBP?
 - What happens to the His bundle when it is traumatized by the screw on the tip of the lead in the long term?
- Can a second His Bundle pacing lead be placed successfully if the earlier lead fails in the long run?
- What are the implications of extracting a chronic HBP lead?
- Beyond pacing hemodynamics, what is the impact of HBP on arrhythmia?:
 - Does HBP reduce the risk of ventricular tachyarrhythmias in the presence of myocardial scar?
- Pts with need for CRT-D:
 - pacing/sensing/defibrillation

THANK YOU FOR YOUR ATTENTION

alanbulava@seznam.cz