IMAGING TO FACILITATE VT ABATION IN STRUCTURAL HEART DISEASE

AL D

Prof. Dr. Hubert Cochet, MD, PhD Professor of Radiology and Medicine, University of Bordeaux, France Email: hubert.cochet@chu-bordeaux.fr

DISCLOSURES

Shareholder:

Grant/Research Support:

Co-founder of inHEART

Siemens Healthineers Guerbet Medtronic

Speaker/Consultant fees:

Siemens Healthineers Biosense Webster Boston Scientific Abbott Fineheart Farapulse

RATIONALE

Ursell PC et al. *Circ Res*. 1985;56:436-51

Wagner A et al. *Lancet*. 2003;361:374-9

IMAGING AND VT ABLATION

BEFORE THE PROCEDURE

DURING THE PROCEDURE

IMAGING TO IDENTIFY THE UNDERLYING ETIOLOGY

157 pts with VT or VF CMR alters diagnosis in **38% of pts with no history of SHD**

negative echo & angio

Hennig et al. Eur Heart J Cardiovasc Imaging

THE SMALLER THE PIXEL THE BETTER

CONVENTIONAL LGE

HIGH-RES. LGE

HIGH-RES LGE => better detection of SHD (17% à 38%, P<0.001).

> Hennig et al. Eur Heart J Cardiovasc Imaging

OTHER PRE-PROCEDURAL INFORMATION

ACCESS	ACCESS ROUTE							
	LV endo							
2	CS? Epicardial?							
0	LV+RV endo? Septal artery?							

EPICARDIAL ACCESS

THROMBUS

IMAGING AND VT ABLATION

BEFORE THE PROCEDURE

DURING THE PROCEDURE

SUBSTRATE MAPPING FROM MRI: LATE GADOLINIUM ENHANCEMENT

SUBSTRATE MAPPING FROM CT: MULTI-PARAMETRIC

Late iodine enhancement

SUBSTRATE MAPPING FROM CT: EXAMPLE IN POST-MI

SUBSTRATE MAPPING FROM CT: EXAMPLE IN POST-MI

CT-thickness

MR-late gadolinium

PROCEDURAL INTEGRATION

Improved efficacy Shorter procedures

Simpler & more standardized procedures

aVF

aV

aV

V3

IMAGE-GUIDED VT ABLATION

lingc

MUSIC VT NETWORK

MUSIC VT NETWORK

MUSIC VT NETWORK

30 centres, 1200 patients Outcome at 1 year:

IMPACT ON OUTCOME

Yamashita S et al. Circ Arrhythm Electrophysiol. 2016 Jul;9(7).

IMPACT ON OUTCOME

Author, year of publication	Total no. of subjects	No. of VT free subjects		ES (95% CI)	% Weight	Author, year of publication	Total no. of subjects	No. of subjects survived		ES (95% CI)	% Weigł
onventional VT ab	lation					Conventional V	ablation				
Acosta, 2016	44						44				3.44
Arenal, 2013		34		0.58 (0.44, 0.70)							
Aryana, 2014			•	0.19 (0.08, 0.36)							
	46			0.63 (0.48, 0.77)		Aryana, 2014		10			
Clemens, 2015					2.48					0.91 (0.79, 0.98)	
le Riva, 2015						Clemens, 2015					2.25
Di Biase, 2015						de Riva, 2015					
				0.54 (0.44, 0.65)		Di Biase, 2015		104			3.46
				0.56 (0.46, 0.66)		Di Biase,2012				0.98 (0.92, 1.00)	
				0.60 (0.45, 0.74)		Dinov 2012					
						Dinov, 2016					
						Eulapage 2016					
						Pukunaga,2016					
loya, 2014						Goya, 2014					
				- 0.62 (0.47, 0.75)		Izguierdo, 2015					
				0.50 (0.36, 0.64)		Jin,2017	54			0.59 (0.45, 0.72)	2.71
				0.58 (0.45, 0.71)	2.64	Kuck,2017					
				0.78 (0.69, 0.85)		Luther 2015					
		6 -		0.06 (0.02, 0.13)		Mork 2014					
/lork, 2014				0.30 (0.21, 0.41)		Onen 2016					
				0.55 (0.39, 0.70)	2.54	02can, 2016					
				0.74 (0.63, 0.82)		Pioretti,2015					
aggu, 2014		4		0.80 (0.28, 0.99)		Saggu, 2014		4			
						Sapp, 2016				0.73 (0.64, 0.80)	
ilberbauer, 2014						Silberbauer, 2014				0.84 (0.77, 0.89)	3.47
						Siontis, 2016					
						Skoda 2016					
īlz, 2014					1.96	Tile 2014					J.20
						111Z, 2014					1.47
				- 0.64 (0.51, 0.75)		Isiarchis,2015					3.42
				0.77 (0.74, 0.79)		Tung, 2013					
	1174					Tung, 2015					
				0.56 (0.53, 0.59)	2.90	Yokokowa.2013					
			\sim	0.58 (0.51, 0.65)	87.34	Subtotal (I^2 = 96	.45%, p = 0.		\diamond	0.83 (0.78, 0.87)	89.76
Image guided VT ablation			B 00 (0 70, 0 00)	2.80	Image guided V	T ablation					
				0.90 (0.79, 0.96)		Acosta 2016	50		100	0.07 (0.00 4.00)	
				0.61 (0.65, 0.82)							
				0.75 (0.35, 0.97)							
		40		0.51 (0.69, 0.69)			54				
				0.82 (0.76, 0.88)	12.66					0.94 (0.90, 0.98)	, 10.24
	en groups: p										
Overall (I^2 = 97.44				0.61 (0.54, 0.67)		Overall (I^2 = 96.				0.84 (0.80, 0.88)	
			1	1	1		1		I I		

Hendriks. EP Europace. 2017 Jun;19(3):483.

IMAGE INTEGRATION STRATEGY

CURRENT: IMAGING TO GUIDE MAPPING

Improved anatomy and substrate definition

- Impact on procedure time +
- Impact on efficacy +

SOON: IMAGING TO DEFINE ABLATION TARGETS

Dedicate the entire procedure to ablation

- Impact on procedure time +++
- Impact on efficacy +++
- Simplification / standardization of procedures +++

LIMITATIONS OF CMR

Scar-related VT substrate

Surviving fibers within scar Ursell PC et al. Circ Res. 1985

CMR "Gold Standard » Wagner A et al. Lancet. 2003

ICD artifacts

CMR ISSUES Availability of high-res LGE methods Limited spatial resolution (even if high-res...)

SOLUTION CT-BASED SUBSTRATE MAPPING

HYPOTHESIS: in chronic infarcts, surviving fibers within scar are more likely present in areas of relatively preserved thickness, while very thin areas will act as conduction block.

Mapping thickness within scar can help predict critical VT isthmuses

VR₽ aVL▶ aVF♪ V1) R V2> **V3**▶ V4 V5>

63 yo man with prior infarct in RCA territory Multiple ICD shocks on monomorphic VT

٩VR aVL▶ aVF♪ V1) R V2> **V3** V4 V5>

63 yo man with prior infarct in RCA territory Multiple ICD shocks on monomorphic VT

٩VR aVL▶ aVF♪ V1) R V2> **V3** V4 V5>

63 yo man with prior infarct in RCA territory Multiple ICD shocks on monomorphic VT

aVL aVF♪ V1) R V2) V3> V4 V5>

63 yo man with prior infarct in RCA territory Multiple ICD shocks on monomorphic VT

ENDOCARDIAL VT ACTIVATION MAP

PRV

aVR)

aVL

aVF)

V1>

V2

V3)

V4

V5

CT-THICKNESS CHANNELS EXAMPLES

PRV

aVR)

aVL

aVF⊁

V1>

V2

V3)

V4

V5

CT-THICKNESS CHANNELS EXAMPLES

Channelness

0

aVR

aVL)

aVF)

V1>

V2>

V3)

V4)

V5)

CT-THICKNESS CHANNELS EXAMPLES

PERSPECTIVE CT-BASED SIMULATION OF VT

Nicolas Cedilnik et al. Europace 2018

PERSPECTIVE INTEGRATION OF IMAGING AND ECGI

PERSPECTIVE INTEGRATION OF IMAGING AND ECGI

70 yo man with DCM. ICD shocks.

PERSPECTIVE INTEGRATION OF IMAGING AND ECGI

70 yo man with DCM. ICD shocks.

ORIGINAL ARTICLE

Noninvasive Cardiac Radiation for Ablation of Ventricular Tachycardia

Phillip S. Cuculich, M.D., Matthew R. Schill, M.D., Rojano Kashani, Ph.D., Sasa Mutic, Ph.D., Adam Lang, M.D., Daniel Cooper, M.D., Mitchell Faddis, M.D., Ph.D., Marye Gleva, M.D., Amit Noheria, M.B., B.S., Timothy W. Smith, M.D., D.Phil, Dennis

Hallahan, M.D., Yoram Rudy, Ph.D., et al.

CONCLUSIONS

Role of CT/MR imaging in VT

before ablation

diagnosis of underlying etiology

ablation planningdetection of thrombus
need for epicardial access
challenges of epicardial access

ablation guidance

perspective

enhanced definition of substrate & anatomy identifying structures at risk (coronaries, phrenic) direct definition of ablation targets

fully non-invasive cardiac ablation

TAKE HOME MESSAGES

Ventricular arrhythmia without known structural heart disease?

Get an MRI even if echo and angio are negative

Patient considered for ICD implantation for primary prevention?

Use MRI to measure LVEF because you'll have scar data in case of future shocks

Patient referred for VT ablation?

Develop a close collaboration with your imaging team to obtain CT/MRI

Seek for image processing solutions to get optimal imaging information in the lab