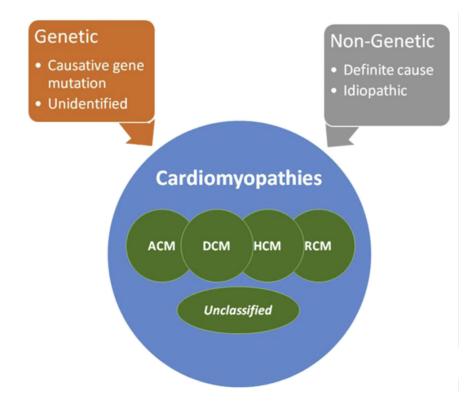
Sudden Cardiac Death in DCM Patients

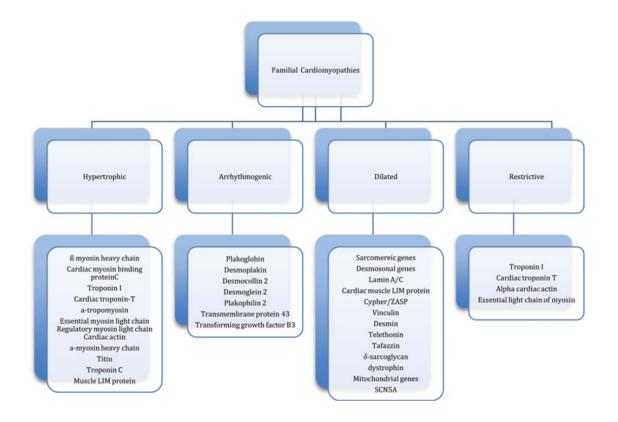
W. Haverkamp



Kardiologie im Spreebogen Berlin, Germany

Division of Cardiology and Metabolism Department of Cardiology Campus Virchow Clinic and Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Charité Universitätsmedizin Berlin Berlin, Germany

Cardiomyopathies



Cardiomyopathies are a group of heterogeneous disorders. Different classifications exist. Based on the **ESC classification**, different morphofunctional phenotypes can be distinguished.

ACM: arrhythmogenic cardiomyopathy
DCM: dilated cardiomyopathy
HCM: hypertrophic cardiomyopathy
RCM: restrictive cardiomyopathies
Unclassified cardiomyopathies

Bakalakos et al. 2018

Cardiomyopathies

HCM and ACM

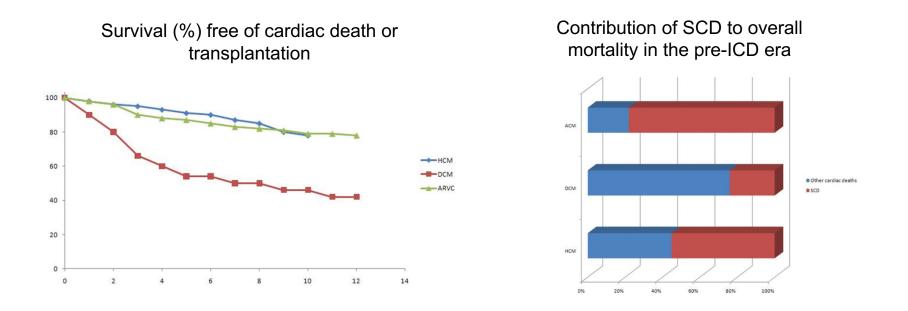
Primarily genetic diseases

DCM

Familial disease is reported in 20% to 35% of cases

Age of onset is typically between the ages of 20–50

Elliott et al. 2008


DCM: Causes

Genetic causes	Features
Predominant cardiac phenotype	
Titin (TTN)	20–25% of familial DCM; autosomal dominant mode
Lamin A/C (LMNA)	~5% of familial DCM; autosomal dominant mode
Myosin heavy chain 7 (MYH7)	~4% of familial DCM; autosomal dominant mode
Troponin T (TNNT2)	~2% of familial DCM; autosomal dominant mode
Myosin-binding protein C (MYBPC3)	~2% of familial DCM; autosomal dominant mode
Myopalladin (MYPN)	~2% of familial DCM; autosomal dominant mode
Sodium channel α unit (SCN5A)	~2% of familial DCM; autosomal dominant mode
Phospholamban (PLN)	~1% of familial DCM; autosomal dominant mode
Neuromuscular disorders	
Duchenne muscular dystrophy (DMD)	X-linked mode; creatine kinase elevation
Becker muscular dystrophy (BMD)	X-linked mode; creatine kinase elevation
Syndromic diseases	
Mitochondrial diseases	Mitochondrial inheritance; syndromic expression including skeletal myopathy
Tafazzin (TAZ/G4.5)	X-linked mode; Barth syndrome
DCM=dilated cardiomyopathy.	
Table 1: Genetic causes of DCM ⁴	

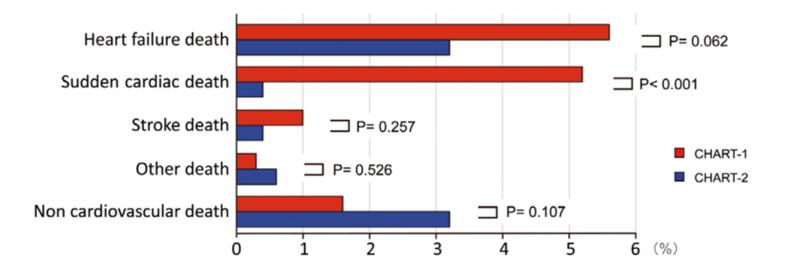
	Comments
Infection (myocarditis)	
Viral (including parvovirus B19, HPV6, HIV)	
Bacterial (including Lyme disease)	Atrioventricular block in Lyme disease
Fungal	
Parasitic	
Rickettsial	
Protozoal	
Autoimmune diseases	
Organ specific	
Giant cell myocarditis	Multinucleated giant cells; frequent AV block and ventricular arrhythmias
Non-organ specific	
Non-infectious myocarditis	
Polymyositis/dermatomyositis	
Churg-Strauss syndrome	
Wegener's granulomatosis	
Systemic lupus erythematosus	
Sarcoidosis	Granulomatous myocarditis
Peripartum	
	Risk factors include multiparity, African descent, familial DCM, autoimmunity
Toxicity and overload	
Ethanol	Risk proportionate to extent and duration of alcohol intake
Cocaine, amphetamines, ecstasy	Chronic users
Other toxins	Arsenic, cobalt, anabolic or androgenic steroids
Iron overload	Transfusions, haemachromatosis
Nutritional deficiency	
Selenium deficiency	Rare, high frequency in some parts of China (Keshan disease)
Thiamine deficiency (Beriberi)	High output heart failure, contributing factors include malnutrition and alcohol abuse
Zinc and copper deficiency	Possible contributors to DCM
	(Table 2 continues in next column)

	Comments	
(Continued from previous column)	
Inborn errors of metabolism		
Fatty acid oxidation	Many inborn errors of metabolism cause a mixed phenotype with varying degrees of hypertrophy and reduced systolic function	
Carnitine deficiency	-	
Glycogen storage diseases		
Mucopolysaccharidoses		
Disorders of oxidative phosphorylation	-	
Organic acidurias		
Drugs		
Antineoplastic drugs	Anthracyclines, antimetabolites, alkylating agents, paclitaxel, hypomethylating agents, monoclonal antibodies, tyrosine kinase inhibitors, immunomodulating agents	
Psychiatric drugs	Clozapine, olanzapine, chlorpromazine, risperidone, lithium, methylphenidate, tricyclic antidepressants, phenothiazines	
Others	Chloroquine, all-trans retinoic acid, antiretroviral agents	
Endocrinology		
Hypothyroidism	-	
Hyperthyroidism		
Cushing's and Addison disease		
Pheochromocytoma	-	
Takotsubo cardiomyopathy	Stress-related	
Acromegaly	-	
Diabetes mellitus	-	
Electrolyte disturbances		
Hypocalcaemia	-	
Hypophosphataemia	-	
DCM=dilated cardiomyopathy. HPV=human papillomavirus.		
Table 2: Other causes of DCM ⁴ by subtype, disease, or agent		

Cardiomyopathies

"From the Aphorisms of Hippocrates to the sports fields of the twenty-first century, by both the lay public and medical community, the cardiomyopathies have been recognized as causes of sudden cardiac death."

DCM: Prognosis


Improved Long-Term Prognosis of Dilated Cardiomyopathy With Implementation of Evidenced-Based Medication

- Report From the CHART Studies -

- Prospective longitudinal observational studies which included 11.497 patients with chronic heart failure.
- CHART-1 (2000–2005), n=1,278
- CHART-2 (2006–2014), n=10,219
- Separate comparison of 306 and 710 DCM patients

Ushigome et al. 2015

DCM: Prognosis

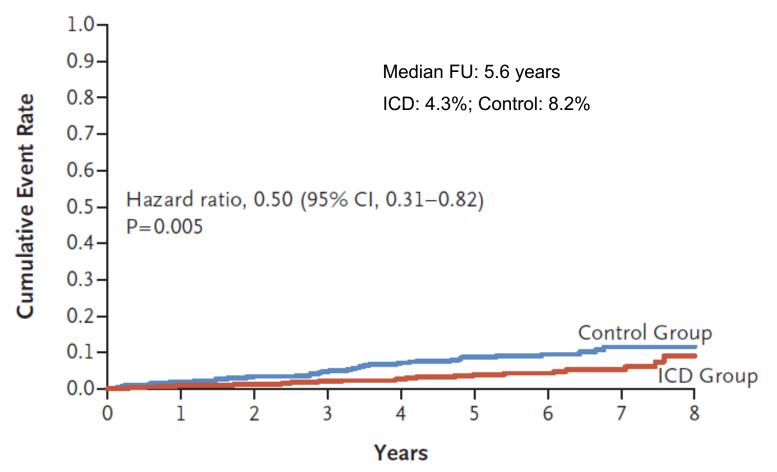
Among the cardiovascular deaths, sudden death rate was significantly decreased from 5.2% in CHART-1 to 0.4% in CHART-2 (P<0.001).

Conclusions

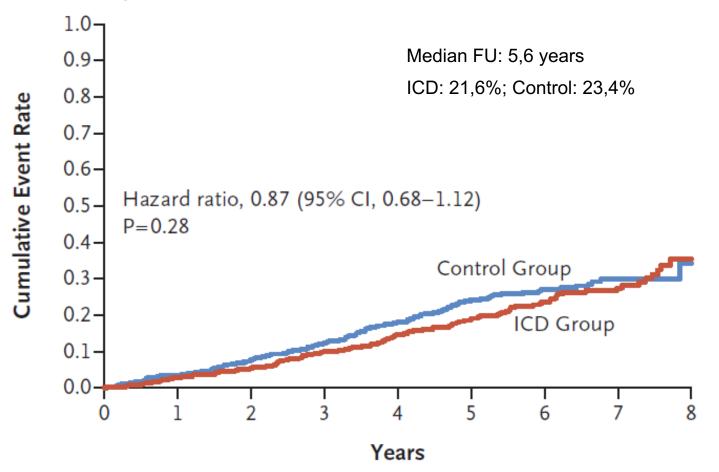
Long-term prognosis of DCM patients has been improved, along with the implantation of evidence based medication in Japan.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE


Defibrillator Implantation in Patients with Nonischemic Systolic Heart Failure

METHODS


In a randomized, controlled trial, 556 patients with symptomatic systolic heart failure (left ventricular ejection fraction, \leq 35%) not caused by coronary artery disease were assigned to receive an <u>ICD</u>, and 560 patients were assigned to receive <u>usual clinical care</u> (control group). In both groups, 58% of the patients received CRT. The primary outcome of the trial was death from any cause. The secondary outcomes were sudden cardiac death and cardiovascular death.

Cause of heart failure "idiopathic" in 76% of pts.

Sudden Cardiac Death

Death from Any Cause

Kober et al. 2016

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Defibrillator Implantation in Patients with Nonischemic Systolic Heart Failure

CONCLUSIONS

In this trial, prophylactic <u>ICD implantation</u> in patients with symptomatic systolic heart failure not caused by coronary artery disease <u>was not associated with a signifi</u>cantly lower long-term rate of death from any cause than was usual clinical care. (Funded by Medtronic and others; DANISH ClinicalTrials.gov number, NCT00542945.)

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Defibrillator Implantation in Patients with Nonischemic Systolic Heart Failure

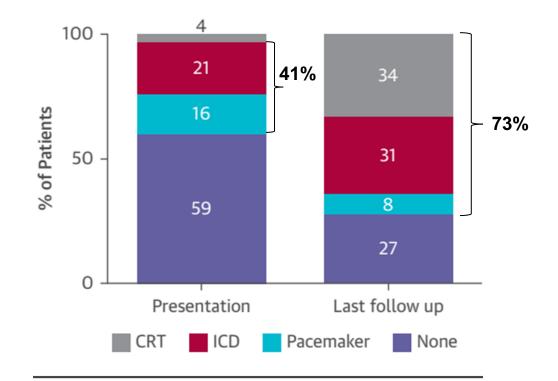
No distinction between acquired and inherited DCM!

In this trial, prophylactic ICD implantation in patients with symptomatic systolic heart failure not caused by coronary artery disease was not associated with a significantly lower long-term rate of death from any cause than was usual clinical care. (Funded by Medtronic and others; DANISH ClinicalTrials.gov number, NCT00542945.)

Kober et al. 2016

LMNA-DCM*

Long-Term Arrhythmic and Nonarrhythmic Outcomes of Lamin A/C Mutation Carriers


METHODS The incidence of AVB, AA, sustained VA, left ventricular systolic dysfunction (LVD) (= left ventricular ejection fraction \leq 50%), and end-stage heart failure (HF) was retrospectively determined in 122 consecutive *LMNA* mutation carriers followed at 5 referral centers for a median of 7 years from first clinical contact. Predictors of VA and end-stage HF or death were determined.

- Mean age at first clinical contact: 41 +/-14 yrs
- LV-EF at first clinical contact: 53 +/- 14 %
 - Patients with LV-EF > 50%: 53%

Kumar et al. 2016

*Frequency of LMNA-related DCM: 5 - 10% of familial DCM and 2 - 5% of non-familial DCM

LMNA-DCM

The percentage of patients with implantable cardioverterdefibrillators (ICD) or cardiac resynchronization therapy (CRT) defibrillators increased substantially at follow-up.

LMNA-DCM*

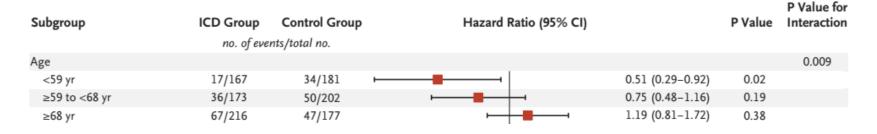
- 52 of 122 pts. (43%) developed sustained ventricular arrhythmia
 - 22 pts. (18%) experienced electrical storm

*Median FU: 7 yrs

- 58 of 122 pts. (48%) with primary prevention ICD therapy
 - 29 pts. (50%) appropriate ICD intervention
- 68 of 122 pts. pts. (56%) had CRT implantation
 - 30 pts. (44%) had heart transplantation
- 70 of 122 pts. (57%) with progression to endstage-HF
- 22 of 122 pts. (18%) died

Kumar et al. 2016

REVIEW


Updated clinical overview on cardiac laminopathies: an electrical and mechanical disease

G. Peretto ^(b)^a, S. Sala^a, S. Benedetti^b, C. Di Resta^c, L. Gigli^a, M. Ferrari^{b,c}, and P. Della Bella^a

[...] it seems appropriate to implant a CRT-D every time a CRT-P is indicated [...].

Peretto et al. 2018

Subgroup analysis accoreding to age

Kober et al. 2016

Familial dilated cardiomyopathy diagnosis is commonly overlooked at the time of transplant listing

Evaluation of 73 pts. with ESHF from the United Network for Organ Sharing registry.

- 3 out 73 pts. diagnosed as having familial DCM
- after reevaluation 19 (26%) of pts. were found to have familial DCM

Conclusions

Despite decades of evidence supporting a genetic etiology of DCM [...], the adoption of guidelines to screen patients for FDCM by clinicians has been slow. In this transplant population, in which at least one or more cardiologists has presumably evaluated each individual, the diagnosis of FDCM is missed in a large majority of cases.

Conclusions

- Dilated cardiomyopathy are a heterogeneous group of acquired or inherited myocardial diseases.
- Heart failure and malignant arrhythmias represent major causes
 of death.
- Prospective studies taking the specific pathological/genetic substrate into consideration are urgently needed.
- It is time for precision medicine and precision trials in heart failure!

Making the Correct Diagnosis

Hidden in Heart Failure

Douglas Ewan Cannie,^{1,2} Mohammed Majid Akhtar^{1,2} and Perry Elliott^{1,2}

Abstract

Current diagnostic strategies fail to illuminate the presence of rare disease in the heart failure population. One-third of heart failure patients are categorised as suffering an idiopathic dilated cardiomyopathy, while others are labelled only as heart failure with preserved ejection fraction. Those affected frequently suffer from delays in diagnosis, which can have a significant impact on quality of life and prognosis. Traditional rhetoric argues that delineation of this patient population is superfluous to treatment, as elucidation of aetiology will not lead to a deviation from standard management protocols. This article emphasises the importance of identifying genetic, inflammatory and infiltrative causes of heart failure to enable patients to access tailored management strategies.

Cannie et al. 2019